オープンソースカンファレンス2023 Tokyo/Fallに出展します

10月21日(土)に開催される、オープンソースカンファレンス2023 Tokyo/Fallに、Japanese Raspberry Pi Users Groupが出展予定です。

基本的にはMaker Faire Tokyo 2023にて展示した内容とほぼ同等ですが、一部違う作例も持ち込み予定です。

また、Raspberry Pi 5本体も展示しますので、この機会にぜひご覧ください。

https://event.ospn.jp/osc2023-fall/

Raspberry JAM Tokyo 2023.10を開催します

Raspberry Pi ユーザーズグループ、及び関係者の皆様、

8月に引き続き10月もギリギリの告知で大変恐縮ですが、24日の夜にミドクラ様のオフィスをお借りしまして、『Experience Raspberry Pi 5』と題してRaspberry Pi 5についてお話をさせていただければと思っております。

また、Raspberry Pi LTD CEO Eben Uptonから日本のユーザー向けのビデオメッセージの紹介も予定しております。

当日はRaspberry Pi 5本体も展示を行う予定です。Maker Faire Tokyo 2023に来れなかった方は、この機会にぜひご覧ください。

なお、セッション後は懇親会とライトニングトークを予定しております。どうぞよろしくお願いいたします。

参加登録について

参加登録はConnpassにて受け付けております。ご参加をお待ちしております。

https://connpass.com/event/298593/

Raspberry Pi 5の電源回りを確かめてみる

あっきぃです。

Raspberry Pi 5が出たら多分騒ぎになるのかな……?と思っていた電源周りが、やはり騒ぎになっているようです。

最小要件が5V/3Aなのはまだ良いのですが、推奨要件(USBとか諸々電気を使う場合)の5V/5AのUSB-C PD電源という点がなかなかのクセモノになりそうです。

5V/5Aに対応したPD電源アダプターは世の中にほぼ存在せず(オフィシャル電源アダプターもカスタムPDOというもので実装しているようです)、USB PD3.1のEPRに沿えば5V/5Aの出力が可能になるように見えます(※)。PDについては私も詳しくなく、検索などで追って徐々に理解している段階です。

※参照元はこちら。ただ、他の記述を見つけられず、本当なのかどうか……?
https://www.graniteriverlabs.com/ja-jp/technical-blog/usb-power-delivery-specification-3-1

とは言え、5V/5Aが必須なわけではなく、あくまで推奨の話だと思いたいですよね。もちろん、USB SSDを接続したり、将来的にリリースされるM.2 HATを搭載したりすれば、5V/5Aが必要なのは想像できますが、一旦置いといて、ここでは最小要件の3Aでどこまで問題なく使用できるかを確認してみたいと思います。合わせて、消費電力や、発熱、サーマルスロットリングや電圧低下の起こり具合についても見ていきます。

構成

前回の性能検証の記事を書いた時点で作ればよかったのですが、ドタバタしていましたので、ここで改めて検証の構成を解説します。

日本では技適の取得が完了していないため、検証を行うには、シールドボックスに投入して電波を十分に減衰させるか、「技適未取得機器を用いた実験等の特例制度」を用いて180日間内で検証する方法があります(※)。ユーザー会では、以前よりスイッチサイエンスさんからお借りしているシールドボックスがありますので、シールドボックスに入れて検証を行っています。

※検証後は廃止手続き(電波の発射を防止するために必要な措置を講じる、つまり電源を入れないようにする。額縁に入れて飾るとかでしょうかね?)が必要です。また、技適取得前に入手したものについては技適マークが無いため、今後技適の取得が完了したとしても利用可能にはならない点にも注意が必要です。基本的には技適の取得が完了して国内リセーラーが発売するまで購入は待ちましょう。

シールドボックス内外の接続は以下の図の通りです。

Raspberry Pi 5をシールドボックスに入れてながら使用するための電源・USB・ネットワークなどの接続図

電源は、市販のUSB-AC電源(Anker 735)と、USB PDに対応したケーブルを使用しました。ボックス外は、ワットモニターに接続して消費電力が計測できるようにします。

ネットワークは、ボックス内でUSB3.0-LAN変換アダプターを使用して接続し、ボックス外に出るためのUSB端子に接続します。ただし、ボックスのUSB端子はUSB2.0のため、性能は480Mbps内に制限されます。ボックス外で、Raspberry Pi 4で作ったネットワークブリッジにUSB接続し、LANに接続可能としています。iperf3での実測は200Mbps程度でしたが、ログインしたりテストに必要なパッケージを取得する程度ならなど十分でしょう。もしGbEのテストをするときは、ボックス内にPi4などを追加で投入してテストすれば対応可能です。

ボックスのもう一つのUSB端子には、Rspberry Pi Debug Probeを接続しています。これを用いることで、OS起動前の情報が取得できますし、OS起動後もシリアル通信でログインして操作することが可能です。

まずは小さいヒートシンクだけでSDカード起動してみる

いままでのRaspberry Piなら許された、適当な小さいヒートシンクと、MicroSDカード(Samsung EVO Plus 64GB)の組み合わせで起動してみます。シールドボックスの様子はこちら(Debug Probeが光っていますが、これは端末からの給電のためで、Raspberry Pi 5にはまだ通電していません)。

シールドボックに、MicroSDカードを挿入したRaspberry Pi 5、USB-LANアダプター、Raspberry Pi Debug Probe、USB-AC電源を入れ、接続を済ませた様子。

シリアル接続しながら通電を開始すると、以下のようなメッセージが表示されます。

RPi: BOOTSYS release VERSION:3094eda5 DATE: 2023/09/21 TIME: 17:58:43
BOOTMODE: 0x06 partition 0 build-ts BUILD_TIMESTAMP=1695315523 serial ******** boardrev d04170 stc *******
AON_RESET: 00000003 PM_RSTS 00001000
RP1_BOOT chip ID: 0x20001927
PM_RSTS: 0x00001000
part 00000000 reset_info 00000000
PMIC reset-event 00000000 rtc 00000004 alarm 00000000 enabled 0
uSD voltage 3.3V
Initialising SDRAM 'Micron' 32Gb x2 total-size: 64 Gbit 4267
DDR 4267 1 0 64 152
RP1_BOOT chip ID: 0x20001927

RP1_BOOT chip ID: 0x20001927
RP1_BOOT: fw size 25968
PCI2 init
PCI2 reset
PCIe scan 00001de4:00000001
RP1_CHIP_INFO 20001927

RPi: BOOTLOADER release VERSION:3094eda5 DATE: 2023/09/21 TIME: 17:58:43
BOOTMODE: 0x06 partition 0 build-ts BUILD_TIMESTAMP=1695315523 serial ******** boardrev d04170 stc *******
AON_RESET: 00000003 PM_RSTS 00001000
 status
USB_PD CONFIG 0 41
Boot mode: SD (01) order f4
SD HOST: 200000000 CTL0: 0x00800f02 BUS: 400000 Hz actual: 390625 HZ div: 512 (256) status: 0x1fff0000 delay: 276
SD HOST: 200000000 CTL0: 0x00800f02 BUS: 400000 Hz actual: 390625 HZ div: 512 (256) status: 0x1fff0000 delay: 276
OCR c0ff8000 [313]
CID: 001b534d454331533530d5186366a166
CSD: 400e00325b590001dd7f7f800a400000
SD: bus-width: 4 spec: 2 SCR: 0xeeeeeefe 0xeeeeefef
SD CMD: 0x333a0010 (51) 0x59b40000 0x1fff0206
Failed to open device: 'sdcard' (cmd 333a0010 status 1fff0206)
Retry SD 1
SD HOST: 200000000 CTL0: 0x00800000 BUS: 400000 Hz actual: 390625 HZ div: 512 (256) status: 0x1fff0000 delay: 276
SD HOST: 200000000 CTL0: 0x00800f00 BUS: 400000 Hz actual: 390625 HZ div: 512 (256) status: 0x1fff0000 delay: 276
OCR c0ff8000 [2]
CID: 001b534d454331533530d5186366a166
CSD: 400e00325b590001dd7f7f800a400000
SD: bus-width: 4 spec: 2 SCR: 0x02058083 0x00000000
SD HOST: 200000000 CTL0: 0x00800f04 BUS: 50000000 Hz actual: 50000000 HZ div: 4 (2) status: 0x1fff0000 delay: 2
MBR: 0x00002000, 1048576 type: 0x0c
MBR: 0x00102000,124116992 type: 0x83
MBR: 0x00000000,       0 type: 0x00
MBR: 0x00000000,       0 type: 0x00
Trying partition: 0
type: 32 lba: 8192 'mkfs.fat' ' bootfs     ' clusters 261116 (4)
rsc 32 fat-sectors 2040 root dir cluster 2 sectors 0 entries 0
FAT32 clusters 261116
[sdcard] autoboot.txt not found
Trying partition: 0
type: 32 lba: 8192 'mkfs.fat' ' bootfs     ' clusters 261116 (4)
rsc 32 fat-sectors 2040 root dir cluster 2 sectors 0 entries 0
FAT32 clusters 261116
Read config.txt bytes     1229 hnd 0xfef7
[sdcard] pieeprom.upd not found
usb_max_current_enable default 0 max-current 3000
Read bcm2712-rpi-5-b.dtb bytes    71797 hnd 0xcb56
dt-match: compatible: raspberrypi,5-model-b match: brcm,bcm2712
dt-match: compatible: brcm,bcm2712 match: brcm,bcm2712
PM_RSTS 00001000
Selecting USB low current limit

Raspberry Pi 5内の各デバイスの初期化に関するメッセージや、ブートデバイスを探して起動しようとするメッセージが見られます。そして最後の「Selecting USB low current limit」が、5V/5A電源を検出できず、USBポートの供給は600mAまでとして起動しますよ、というメッセージですね。

起動中にワットモニターが表示した消費電力は、3〜6Wの範囲でした。

このあとのシリアルの出力はOSに変わり、少しするとOSのログインプロンプトが出力されます。

NOTICE:  BL31: v2.6(release):v2.6-239-g2a9ede0bd
NOTICE:  BL31: Built : 14:26:57, Jun 22 2023
[    0.902716] spi-bcm2835 107d004000.spi: no tx-dma configuration found - not using dma mode

Debian GNU/Linux 12 pios5 ttyAMA10

pios5 login: 

起動が完了したあとの消費電力は3.3W〜3.5Wくらいで安定しました。つまり0.66Aくらいですね。また、しばし放置してから vcgencmd measure_temp コマンドでCPU温度を取得すると56度ほどでした。空気がこもるシールドボックス内での測定のため、通常の室内などではもう少し低く推移する可能性が考えられます。

yes >/dev/null & を4つ投入して、CPUを全部100%にしてみます。消費電力を観察しつつCPU温度も確認したところ、10Wまで消費電力が上昇しますが、CPU温度が85度に達したところで、消費電力が7.5〜8Wくらいまで下がりました。サーマルスロットリングが働いたことがわかります。また、電圧低下も時々発生していました。アイドル時の56度からyesコマンドを実行してサーマルスロットリングが働くまでの時間は、40秒ほどでした。

Alasdair Allan氏(Raspberry Pi Ltdの方)が公開している、スロットルを確認するスクリプトでも、電圧低下・スロットル・周波数のキャッピングが発生したことが確認できました。

https://gist.github.com/aallan/0b03f5dcc65756dde6045c6e96c26459

$ ./throttled.sh 
Status: 0xf0008
Undervolted:
   Now: NO
   Run: YES
Throttled:
   Now: NO
   Run: YES
Frequency Capped:
   Now: NO
   Run: YES

ヒートシンクのみ、SDカードブートの環境では、アイドル時の消費電力3.3W・CPU温度56度、負荷をかけると消費電力10W・CPU温度は最大85度(以降はサーマルスロットリングで温度維持を優先した周波数以下などが発生)となりました。

小さいヒートシンクにファンを加えてSDカード起動

本来はオフィシャルのケースもしくはActive Coolerがあればよかったのですが、あいにくこちらのサンプルは無いため、先述の小さいヒートシンクで対応しています。ここにPimoroniのFan Shimを追加して、ヒートシンクを空冷しながら動かすとどうなるか確かめます。

Pimoroni Fan Shimを接続したRapberry Pi

まずはアイドル状態。ファンの動作が増えるため、消費電力は3.8W前後に変化します。一方、CPU温度は40度前後で安定しました。

続けてyesコマンドで負荷をかけます。1分ほどかけて65度近くまで上昇しますが、その後は上昇が緩やかになります。2分程で電圧低下とスロットルが検知されますが時々瞬間的に起こるだけのようで、周波数のキャップは発生せずに温度上昇を緩やかに続け、最終的に70度で一旦安定しました。消費電力は10W前後を維持していたため、スロットリングによる性能低下は防げていそうです。おそらく、これ以降は続けてもシールドボックス内の温度上昇次第になりそうなので負荷かけは停止しました。

ヒートシンク+ファンと、SDカードブートの環境では、アイドル時の消費電力3.8W・CPU温度40度、負荷をかけると消費電力10W・CPU温度は70度前後となりました。

ヒートシンク+ファンでUSB SSDブート

USB SSDブートにするとどうなるか確かめます。NVMe SSDをUSBに変換するケースに入れたものをUSB3.0ポートに接続して起動します。M.2 HATが発売されたら、USB3.0ではなく直接PCI Expressで接続できるようになりますね。USBとPCIeでの速度の違いを確かめたりするのが楽しみです。

MicroSDの代わりにNVMe SSDをUSB変換したデバイスから起動しようとするRaspberry Pi 5

通電すると、シリアル通信で以下のメッセージが表示されました。

***
USB boot requires high current (5 volt 5 amp) power supply.
To disable this check set usb_max_current_enable=1 in config.txt
or press the power button to temporarily enable usb_max_current_enable
and continue booting.
See https://rptl.io/rpi5-power-supply-info for more information
***

USBブートの場合、3Aのモードでの起動はサポートされないため、以下のいずれかの対応が必要になります。

  • 5V/5Aの電源を接続する(Raspberry Pi 公式の推奨)
  • usb_max_current_enable=1 を /boot/config.txt に投入して無視する
  • 電源ボタンを1回押して、今回だけ無視する

シールドボックスを開けてボタンを押すのはよろしく無いので、一旦電源を切り、config.txtに設定を投入しました。再度起動すると、起動時のメッセージに、以下のようにメッセージが表示され、無理やりUSB SSDブートが開始します。ただ、やはり無理矢理なので、起動時にさっそく電圧低下が表示されてしまいました。

usb_max_current_enable forced to 1
(中略)
[    6.112188] hwmon hwmon2: Undervoltage detected!

Debian GNU/Linux 12 pios5 ttyAMA10

pios5 login: 

起動が終わってアイドル状態の消費電力は5.3Wほどでした。ここでやっと1Aを超えましたね。CPU温度はファン付きのため38.9度前後でした(設定変更などでボックスを開け閉めしたため下がった様子)。

yesコマンドで負荷をかけます。すると、消費電力は先程より低く9W前後、温度上昇もやや緩やかでした。先程のスクリプトを実行すると、電圧低下とスロットルがオンになりっぱなしになっていました。周波数キャップにはなっていないものの、さすがに電圧不足が出たままになってしまうようです。

./throttled.sh 
Status: 0x50005
Undervolted:
   Now: YES
   Run: YES
Throttled:
   Now: YES
   Run: YES
Frequency Capped:
   Now: NO
   Run: NO

yesコマンドを停止すると、電圧低下もスロットルもすぐにオフに変化しました。

5Aを供給していない環境で、警告を無視してUSBブートした環境では、負荷が高い処理をかけると電圧低下になりやすいことがわかりました。

動作自体が極端に不安定になるわけではないですが、aptでパッケージを入れる程度でも電圧低下が発生するため、USB SSDブートをしたい場合は公式の電源(5V/5A電源)が必須と言えそうです。

まとめ

MicroSDカードから起動する場合は、5V/3A出力の電源アダプターでもおおむね問題なく動作しました。

USB SSDから起動する場合は、3Aで無理やり起動すること自体は可能ですが、電圧低下が発生しやすいため、公式の推奨通り公式の電源アダプターが必要そうです。

消費電力は、アイドル時であれば3.3Wなど、それほど気になる消費電力ではありませんでした。また、負荷をかけてもSDカード環境であれば10W(2A)程度などで済むようでした。

また、温度に関しては、ヒートシンクのみであればおそらく60度以下で動作します。むき出しの状態かつ常に手に握りしめながら使うなどしなければおそらく問題はありません。ただ、負荷が大きくかかり続ける環境等では厳しくなる可能性があるため、安定動作させるにはファンがあると安心でしょう。

もちろん、カメラなどのデバイス、GPIOやDSI接続などのディスプレイや、センサーなどのモジュールなどを搭載した場合、また、ソフトウェアでシステムにかかる負荷などによっては、5V3Aでは電圧が不足するなどの可能性が考えられます。これらを考慮すると公式の電源アダプターが必要になる場合も考えられそうです。USBに関しては、セルフパワータイプのハブを使ったらどうなるかなどは検証してみても良いかもしれませんね。

あともうひとつ、Raspberry Pi 4と同様にブートローダーEEPROMイメージをアップデートできる仕組みがあるため、今後の改良次第では電源周りにも挙動の改善が見られる可能性はあるかもしれません。

https://github.com/raspberrypi/rpi-eeprom

公式の電源アダプターと言われても……PSEマークの取得は?

電源アダプターにも技適のように、PSEマークという認証マークが存在します。このマークが無ければ国内での販売はできません。

これまで歴代のRaspberry Piにも公式の電源アダプターが存在しましたが、残念ながらPSEマークを取得したものは存在しません。代わりに、リセーラー各社が独自の電源アダプターを用意、販売してきました。今回こそは公式のものが発売されないとまずそうに見えますが、果たして発売されるでしょうか……?個人的には、ある意味で技適の件よりもどきどきハラハラしながら見守る次第です。

Raspberry Pi 5 実機レビュー(ベンチマーク編)

あっきぃです。一つ前の記事では外観の変化についてレビューをしました。

こちらの記事では実際に動かして性能を確かめていきます。

いつものとおり、スイッチサイエンスさんからお借りしている電波暗箱におさめて検証をしています。

今回、UART機能を活用すべく、暗箱内のUSB配線は、ラップトップを通じてインターネットに出るためのUSB-LANと、コンソール作業用のDebug Probeを接続して、作業を実施しました。

UnixBench

Raspberry Pi 5のUnixBenchの結果は以下のとおりです。起動OSストレージはUSB SSDを使用してUSBからブートしています。なお、冷却についてはヒートシンクとファンを使用していますが、電波暗箱内に熱がこもってしまうため、冷却についてもう少ししっかり対応すれば結果が変化する可能性がある点についてはご了承ください。

------------------------------------------------------------------------
Benchmark Run: 木  9月 28 2023 14:21:25 - 14:49:24
4 CPUs in system; running 1 parallel copy of tests

Dhrystone 2 using register variables       35871623.6 lps   (10.0 s, 7 samples)
Double-Precision Whetstone                     7000.8 MWIPS (9.9 s, 7 samples)
Execl Throughput                               3747.6 lps   (30.0 s, 2 samples)
File Copy 1024 bufsize 2000 maxblocks        488963.5 KBps  (30.0 s, 2 samples)
File Copy 256 bufsize 500 maxblocks          138385.0 KBps  (30.0 s, 2 samples)
File Copy 4096 bufsize 8000 maxblocks       1100853.5 KBps  (30.0 s, 2 samples)
Pipe Throughput                              414920.4 lps   (10.0 s, 7 samples)
Pipe-based Context Switching                  88485.3 lps   (10.0 s, 7 samples)
Process Creation                               6307.9 lps   (30.0 s, 2 samples)
Shell Scripts (1 concurrent)                   8814.3 lpm   (60.0 s, 2 samples)
Shell Scripts (8 concurrent)                   2210.1 lpm   (60.0 s, 2 samples)
System Call Overhead                         302151.7 lps   (10.0 s, 7 samples)

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0   35871623.6   3073.8
Double-Precision Whetstone                       55.0       7000.8   1272.9
Execl Throughput                                 43.0       3747.6    871.5
File Copy 1024 bufsize 2000 maxblocks          3960.0     488963.5   1234.8
File Copy 256 bufsize 500 maxblocks            1655.0     138385.0    836.2
File Copy 4096 bufsize 8000 maxblocks          5800.0    1100853.5   1898.0
Pipe Throughput                               12440.0     414920.4    333.5
Pipe-based Context Switching                   4000.0      88485.3    221.2
Process Creation                                126.0       6307.9    500.6
Shell Scripts (1 concurrent)                     42.4       8814.3   2078.8
Shell Scripts (8 concurrent)                      6.0       2210.1   3683.5
System Call Overhead                          15000.0     302151.7    201.4
                                                                   ========
System Benchmarks Index Score                                         922.7

------------------------------------------------------------------------
Benchmark Run: 木  9月 28 2023 14:49:24 - 15:17:22
4 CPUs in system; running 4 parallel copies of tests

Dhrystone 2 using register variables      142820987.7 lps   (10.0 s, 7 samples)
Double-Precision Whetstone                    27995.6 MWIPS (9.9 s, 7 samples)
Execl Throughput                              10236.0 lps   (29.7 s, 2 samples)
File Copy 1024 bufsize 2000 maxblocks       1387766.5 KBps  (30.0 s, 2 samples)
File Copy 256 bufsize 500 maxblocks          543428.5 KBps  (30.0 s, 2 samples)
File Copy 4096 bufsize 8000 maxblocks       1328002.9 KBps  (30.0 s, 2 samples)
Pipe Throughput                             1656919.6 lps   (10.0 s, 7 samples)
Pipe-based Context Switching                 312064.0 lps   (10.0 s, 7 samples)
Process Creation                              14014.6 lps   (30.0 s, 2 samples)
Shell Scripts (1 concurrent)                  17045.5 lpm   (60.0 s, 2 samples)
Shell Scripts (8 concurrent)                   2217.8 lpm   (60.1 s, 2 samples)
System Call Overhead                        1208120.9 lps   (10.0 s, 7 samples)

System Benchmarks Index Values               BASELINE       RESULT    INDEX
Dhrystone 2 using register variables         116700.0  142820987.7  12238.3
Double-Precision Whetstone                       55.0      27995.6   5090.1
Execl Throughput                                 43.0      10236.0   2380.5
File Copy 1024 bufsize 2000 maxblocks          3960.0    1387766.5   3504.5
File Copy 256 bufsize 500 maxblocks            1655.0     543428.5   3283.6
File Copy 4096 bufsize 8000 maxblocks          5800.0    1328002.9   2289.7
Pipe Throughput                               12440.0    1656919.6   1331.9
Pipe-based Context Switching                   4000.0     312064.0    780.2
Process Creation                                126.0      14014.6   1112.3
Shell Scripts (1 concurrent)                     42.4      17045.5   4020.2
Shell Scripts (8 concurrent)                      6.0       2217.8   3696.4
System Call Overhead                          15000.0    1208120.9    805.4
                                                                   ========
System Benchmarks Index Score                                        2479.7

以前Raspberry Pi 4で取得した際は1パラレルの結果が320、パラレルの結果が851でしたので、いずれも3倍近い性能向上が確認できました。

OpenSSLテスト

Raspberry Pi 5では、CPUでAES暗号化の機能が搭載され、OpenSSLのパフォーマンスが大幅に向上しています。

$ lscpu 
Architecture:            aarch64
  CPU op-mode(s):        32-bit, 64-bit
  Byte Order:            Little Endian
CPU(s):                  4
  On-line CPU(s) list:   0-3
Vendor ID:               ARM
  Model name:            Cortex-A76
    Model:               1
    Thread(s) per core:  1
    Core(s) per cluster: 4
    Socket(s):           -
    Cluster(s):          1
    Stepping:            r4p1
    CPU(s) scaling MHz:  42%
    CPU max MHz:         2400.0000
    CPU min MHz:         1000.0000
    BogoMIPS:            108.00
    Flags:               fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp
                          asimdhp cpuid asimdrdm lrcpc dcpop asimddp
Vulnerabilities:         
  Gather data sampling:  Not affected
  Itlb multihit:         Not affected
  L1tf:                  Not affected
  Mds:                   Not affected
  Meltdown:              Not affected
  Mmio stale data:       Not affected
  Retbleed:              Not affected
  Spec rstack overflow:  Not affected
  Spec store bypass:     Mitigation; Speculative Store Bypass disabled via prctl
  Spectre v1:            Mitigation; __user pointer sanitization
  Spectre v2:            Mitigation; CSV2, BHB
  Srbds:                 Not affected
  Tsx async abort:       Not affected

UnixBenchと同様ヒートシンクとファンで冷却しながら取得した結果は以下のとおりです。こちらはPi 4とPi 5の両方で取得しました。

Raspberry Pi 4
version: 3.0.9
built on: Tue Jun 27 11:03:08 2023 UTC
options: bn(64,64)
compiler: gcc -fPIC -pthread -Wa,--noexecstack -Wall -fzero-call-used-regs=used-gpr -DOPENSSL_TLS_SECURITY_LEVEL=2 -Wa,--noexecstack -g -O2 -ffile-prefix-map=/build/openssl-3EYFh
e/openssl-3.0.9=. -fstack-protector-strong -Wformat -Werror=format-security -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE
=2
CPUINFO: OPENSSL_armcap=0x81
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
md5              20060.20k    63573.53k   151300.61k   235601.92k   281542.66k   285196.29k
sha1             17071.09k    54337.88k   126238.55k   191955.97k   226500.61k   229244.93k
rmd160           14590.26k    44724.57k    98697.22k   142409.73k   163799.04k   165472.94k
sha256           16343.43k    47364.39k   104071.34k   147695.62k   169000.96k   170732.20k
sha512           13388.09k    53628.05k   115350.95k   191555.93k   240074.75k   243886.76k
hmac(md5)        12954.35k    44555.26k   121571.75k   215362.56k   277427.54k   283060.91k
des-ede3         13872.51k    14476.86k    14628.78k    14671.19k    14682.79k    14685.53k
aes-128-cbc      45137.76k    48874.45k    50187.86k    50521.77k    50604.71k    50621.10k
aes-192-cbc      38315.12k    40966.76k    42086.74k    42387.80k    42289.83k    42303.49k
aes-256-cbc      33279.44k    35311.38k    36007.17k    36201.13k    36255.06k    36252.33k
camellia-128-cbc    55411.08k    65619.88k    68665.69k    69651.80k    69935.10k    69905.07k
camellia-192-cbc    44774.70k    51409.24k    53273.34k    53868.54k    54031.70k    54012.59k
camellia-256-cbc    44913.11k    51417.77k    53275.73k    53867.86k    54037.16k    54018.05k
ghash            90443.33k   123293.55k   138805.08k   143634.09k   144586.07k   140683.95k
rand              2817.99k    10049.37k    30343.83k    63935.95k    95414.66k    99422.10k
Raspberry Pi 5
version: 3.0.9
built on: Tue Jun 27 11:03:08 2023 UTC
options: bn(64,64)
compiler: gcc -fPIC -pthread -Wa,--noexecstack -Wall -fzero-call-used-regs=used-gpr -DOPENSSL_TLS_SECURITY_LEVEL=2 -Wa,--noexecstack -g -O2 -ffile-prefix-map=/build/openssl-3EYFhe/openssl-3.0.9=. -fstack-protector-strong -Wformat -Werror=format-security -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_BUILDING_OPENSSL -DNDEBUG -Wdate-time -D_FORTIFY_SOURCE=2
CPUINFO: OPENSSL_armcap=0xbd
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
md5              38876.14k   112459.26k   244872.99k   343889.92k   388713.13k   392407.72k
sha1             54259.39k   195820.84k   560858.54k  1046074.03k  1403792.04k  1439159.64k
rmd160           32580.90k    87789.51k   182199.38k   255504.10k   286324.05k   288484.01k
sha256           52860.18k   192068.07k   534115.67k  1035979.43k  1447362.56k  1489928.19k
sha512           25557.98k   107456.55k   206635.78k   323940.35k   388903.56k   393560.06k
hmac(md5)        22670.27k    75366.53k   197372.84k   316821.16k   383109.80k   389403.99k
des-ede3         23404.53k    23946.99k    24163.75k    24196.10k    24207.36k    24210.09k
aes-128-cbc     673310.63k  1340616.36k  1732335.62k  1856858.45k  1909036.37k  1913978.88k
aes-192-cbc     628817.58k  1197309.53k  1475447.38k  1547643.22k  1592404.65k  1595796.14k
aes-256-cbc     622174.58k  1062045.76k  1278014.63k  1339694.42k  1365753.86k  1368260.61k
camellia-128-cbc   101635.74k   109795.29k   112098.65k   113008.98k   113186.13k   113339.05k
camellia-192-cbc    80806.49k    85497.51k    86893.48k    87367.68k    87542.44k    87577.94k
camellia-256-cbc    79942.40k    85506.88k    86894.85k    87393.28k    87536.98k    87556.10k
ghash           444674.42k  1505138.90k  3199533.65k  4460456.96k  5020199.59k  5068035.41k
rand             11319.77k    42223.40k   161315.61k   547445.78k  1698195.69k

たとえばaes-256-cbcを抜き出して比較してみると、最大37倍も処理できるようになっていることがわかります。

type                    16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
(Pi4) aes-256-cbc      33279.44k    35311.38k    36007.17k    36201.13k    36255.06k    36252.33k
(Pi5) aes-256-cbc     622174.58k  1062045.76k  1278014.63k  1339694.42k  1365753.86k  1368260.61k
Pi5/Pi4                    18.70        30.08        35.49        37.01        37.67        37.74

AESとは関係しない項目、たとえばsha512でも、1.6〜2倍の性能向上が確認できます。

type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes
(Pi4) sha512    13388.09k    53628.05k   115350.95k   191555.93k   240074.75k   243886.76k
(Pi5) sha512    25557.98k   107456.55k   206635.78k   323940.35k   388903.56k   393560.06k
Pi5/Pi4             1.91         2.00         1.79         1.69         1.62         1.61

高速化したMicroSDスロットのベンチマーク

MicroSDカードスロットはSDR104モードに対応したため、理論値では104MB/sの転送に対応します。このため、最近の一般的なMicroSDカードであれば高速に起動できるようになりました。

MicroSDカードを使用してPi4・Pi5それぞれでOSを起動し、hdparmコマンドで読み込み性能を確認した結果、Pi4は43.9MB/s、Pi5は89.4MB/sとなりました。理論値にはやや届きませんでしたが、Pi4に比べて約2倍の性能が出ていることがわかります。

ddコマンドによるシーケンシャルの書き込み性能は、Pi4が27.5MB/s、Pi5が35.1MB/sとなりました。それほど差が出ていないように見えますが、MicroSDカードは一般的に読み込みは早く、書き込みはそれほど早くないため、MicroSDカードの書き込み性能が先に限界にきている可能性が考えられます。WindowsマシンでCrystalDiskMarkを用いた書き込みテストでも38MB/sだったため、概ねこのあたりが上限のようです。

USB3.0ポートも高速化。ただし電源周りに注意(USBを使わないときも)

USB3.0ポートは、Raspberry Pi 4ではVL805 USBハブチップによって帯域を共有したものでしたが、Raspbery Pi 5では、RP1チップによって2つのUSB3.0+USB2.0ポートが提供されるようになったため、どちらのUSB3.0ポートを使用しても性能を引き出すことが可能になりました。

同時使用のテストではなく1つのSSDのみ接続してのテストですが、こちらもddとhdparmで測定した結果、ddによるシーケンシャルの書き込み性能は、Pi 4では約135MB/s、Pi 5では約328MB/sとなりました。また、hdparmによるシーケンシャルの読み込みテストは、Pi4では約200MB/s、Pi 5では約333MB/sとなりました。いずれも性能の向上が確認できました。

なお、USBの電源を十分に供給するには、オフィシャルの電源アダプターを用いて5V/5Aの電力供給をすることが推奨されています。USBストレージから起動しようとすると、以下のメッセージが表示されます。

***
USB boot requires high current (5 volt 5 amp) power supply.
To disable this check set usb_max_current_enable=1 in config.txt
or press the power button to temporarily enable usb_max_current_enable
and continue booting.
See https://rptl.io/rpi5-power-supply-info for more information
***

市販のUSB-PD電源では5V5Aを出力できるものが少ないため、オフィシャルの電源アダプターのPSE取得を待ってそれを用いるか、メッセージを無視して電源ボタンを押すことで一時的に無視して起動するか、usb_max_current_enable=1を/boot/config.txtに投入して恒久的に無視するかの選択が必要になります。

性能を活かすための電源と冷却選び

一般的なUSB PD電源は5Vの場合3Aまでの出力のため、これをRaspberry Pi 5で使用すると、USBデバイスへの供給が600mAに制限されたり、電力が不足する可能性があります。よって、オフィシャルの電源も必要な機能性があります。ただ、PSEの取得問題が起こるので、これは悩ましい問題かもしれません。幸い(?)日本はRaspberry Pi 5のいわゆる技適取得で他国より発売が遅れるため、待っている間に先に利用できる国のユーザーがどう対処するかの知見を得ることができるでしょう……。

また、発熱も高性能化に伴って増加し、オフィシャルのケースにはファンが標準添付され、オフィシャルのヒートシンク+ファンも発売されます。常に負荷をかけるような使い方をする場合はファンの利用も考慮すると良いでしょう。

日本での発売について

日本での発売は、いわゆる技適の取得後、認定リセーラーとの調整を経てからとなります。詳しくはスイッチサイエンスさん、KSYさんの情報を確認ください。

https://prtimes.jp/main/html/rd/p/000000137.000064534.html

https://raspberry-pi.ksyic.com/news/page/nwp.id/130

Raspberry Pi 5 実機レビュー(外観編)

あっきぃです。

Raspberry Piの在庫が少しずつ復活する中、Raspberry Pi 5がリリースされました!今回はどこから語ってよいか迷うほどたくさんのアップデートがあるので、できる限り紹介していきたいと思います。

今回も例によってサンプルをお預かりしていますので、そちらを用いてレポートしていきます。

まずは外観編です。別途ベンチマーク編もアップしますのでお楽しみに。

全体写真

基板表面。詳細は後述していきますが、多数のポートが移動しており、今回も過去の世代との互換が失われている点は注意が要ります。

基板裏面。MicroSDスロットのみという点は変わりありませんが、GPIOポートなどの部品の”足”が製造方法の改良によって飛び出さないようになったほか、GNDに接続されたループ状の部品が2つ追加され、MicroSDスロットと3点で立つことで、平らな場所に置いたときの安定性が向上しています。

パワーアップしたCPU!

SoCには、Cortex-A76を採用したBroadComのBCM2712が搭載されました。Cortex-A76といえば2018年頃のコアですが、MacBook2015やIntelのSkylake世代に近い性能とされ、現在でも日常的な用途では不足がない性能をRaspberry Pi 5で使えるようになったことは大きな進化と言えます。

また、GPUも新しくVideoCore VIIが搭載されます。

メモリは4GBと8GB

RAMは、4267MHzのLPDDR4Xメモリを搭載します。リリース当初は4GBと8GBのみの販売となりますが、基板表面には製品のトレース用にメモリの容量を示す部品が実装されており、1GB、2GB版の製造予定を伺わせるパターンを見ることができます。残念ながら(?)一部でPi4の頃から期待されている16GBの用意はなさそうです。

新たに追加されたRP1チップは”サウスブリッジ”的IOポート

USB3.0ポートに横に目立つRP1チップは、SoCとPCI Express 2.0 x4で接続された独自設計のIOチップです。SDIO、USB2.0/3.0ポート、LAN、MIPI(4レーンのCSI/DSI)、GPIO、コンポジットビデオはこのチップから提供されます。

変化したCSI/DSIポート

Raspberry Pi 1 Model B+以降微動だにしなかったCSI・DSIポートの配置が変更されました。CSIポートがあった位置に2つ並ぶ形で配置され、デュアルのCSI・DSI共通ポートとして利用できるようになりました。つまり、これまでCompute Moduleでしかできなかったデュアルカメラ・デュアルDSIディスプレイがRaspberry Pi 5で扱えるようになったことを意味します。

なお、ポート形状はCompute Module、Raspberry Pi Zeroと同じ小さいタイプのケーブルになります。CSIケーブルはZeroと同じものが利用できますが、DSIケーブルはCSIケーブルと配線が異る点に注意が必要です。今回のリリースに合わせてオフィシャルのケーブルアクセサリが発売されたため、利用の際にはケーブルの用意も検討すると良いでしょう。

LANポートが再び移動。USB3.0はより高速に。

LANポートが3B+以前と同様、HDMIポート側に移動しました。PoE用のピンも移動したため、過去に発売されたPoE HATとの互換性が失われています。こちらも、Raspberry Pi 5のPoE HATが今後発売される予定です。

USB3.0ポートの配置はRaspberry Pi 4と変わらず真ん中に2ポート配置されています。Raspberry PiではVL805 USBハブチップによる分配でしたが、今回は2つの独立したコントローラーから提供されているため、同時にUSB3.0の帯域を使うことが可能になりました。

独立したUARTポート

UARTポートがGPIOから独立して、HDMI0とHDMI1の間に配置されました。このポートはRaspberry Pi Debug Probeを接続して、115200 baud rateで使うことができます。また、OS起動前のDiagもここから取得できるようになりました。

RTCがサポートされたPMICチップを採用。待望の電源ボタンも

電源管理チップにはdialog DA9091チップを採用しています。RTCが含まれるため、バッテリーを接続することで、時刻の維持が可能になりました。バッテリーはオフィシャルから発売されます。バッテリーは専用のポートもしくはスルーホールを使用して接続して使います。
(2023/10/4 お詫びと訂正)スルーホールはバッテリー用ではなく、電源ボタンと同等の機能でした。お詫びして訂正いたします。

また、電源ボタンが初めて実装されました。電源接続時はこれまで通りすぐに起動しますが、それ以降はPCと同じように電源を切ったり、再び電源を入れたりできるようになります。

PCIeポート

Raspberry Pi 4ではCompute Module 4でしか自由に使えなかったPCI Expressポートが、電源ボタンの横(元のDSIポートの位置)に用意されました。このポートはPCI Express 2.0 x1がサポート(非サポートながらPCI Express 3.0 x1も可能)されており、今後発売されるアクセサリボードを使って接続できるようになります。

スピードアップしたSDカードスロット

MicroSDカードスロットについては、Raspberry Pi 4では40MB/s前後の読み書き性能でしたが、Raspberry Pi 5ではUHS-I SDR104モードがサポートされたため、より高速な読み書きが可能となりました。

ファン電源ポートも搭載

ファンの電源・制御用のポートもUSB2.0ポートの後ろに用意されました。オフィシャルのケースやアクティブクーリングシートシンクのファンを接続して使用します。

なお、RTCバッテリー・UART・ファンのポートは保護用のキャップが付いており、外れやすく、なくしやすいため、あらかじめ外して口チャック袋などに入れて保管するか、思い切って廃棄してしまっても良いかもしれません。

消えたもの、変わらないもの

大きな変化が多数ある中で、変化しなかったものとしては無線チップがあげられます。これはRaspberry Pi 4と同じく、2.4GHz/5GHzの無線LANと、Bluetooth 5.0とBLEがサポートされます。

また、3.5mmの4ピンオーディオジャックが姿を消しました。このうち、コンポジットビデオ出力のみはRaspberry Pi Zeroなどのようにスルーホールで提供されます。

ベンチマーク編に続く!

ベンチマーク編では、恒例のUnixBenchや、ネットワーク、CPUのAESサポートによって高速化したOpenSSLの性能テストなどをご紹介します。

Raspberry Pi 5 リリース

Raspberry Pi Ltdは9月28日7時(イギリス夏時間)にRaspberry Pi 5を発表しました。

出荷は10月23日より行われます。また、日本では出荷時点では技術基準適合証明・技術基準適合認定が取得されていませんが、今後取得が予定されています。

Raspberry Pi 5の主な機能は以下のとおりです。

  • 2.4GHz クアッドコア Arm Cortex A-76 CPUとVideoCore VIIを搭載したBroadCom BCM2712 SoC
  • 4267MHz の LPDDR4X SDRAM
  • 2.4GHz/5GHz 802.11ac 無線LAN
  • Bluetooth5.0/BLE
  • SDR104に対応して高速化したMicroSDカードスロット
  • それぞれ5Gbpsでの動作をサポートする2つのUSB3.0ポートと、2つのUSB2.0ポート
  • PoE+に対応したギガビットイーサネット(PoE+使用にはPoE+ HATが必要です)
  • 2つの4レーンMIPIポート(カメラ・ディスプレイ兼用)
  • PCI Express 2.0×1ポート
  • USB Type-Cによる 5V/5A DC電源(PDが有効)
  • Raspberry Pi 40ピン GPIOポート
  • 外部バッテリーから電力供給可能なRTC
  • 冷却ファン専用コネクター
  • Raspberry Pi Debug Probeを使用して利用可能な独立したUARTポート
  • 電源ボタン

発売開始時には、4GBと8GBのモデルが販売される予定です。価格は4GBモデルが60ドル、8GBモデルが80ドルです(日本での価格は認定リセーラーからの発表を確認してください)。

また、Raspberry Pi 5の発売に合わせて、アクセサリ各種も発売されます。

「27W USB-C PD Power Supply」は、Power Deliveryに対応したRaspberry Pi 5向けの電源アダプターです。Raspberry Pi 5のUSBポートで電源供給できる合計容量はデフォルトでは600mAですが、USB PD電源を使用することで自動で1.6Aに増強されます。また、電源アダプターは9V3A、12V2.25A、15V1.8Aの出力にも対応します。

「Raspberry Pi 5 Case」は、新しい専用ケースです。可変速ファンを搭載しており、Raspberry Pi 5のファン専用コネクターに接続することで使用できます。カラーは赤・白の他に、グレーの販売も予定されています。

「Active Cooler」は、ケースを使用せずに高負荷でRaspberry Piを動作させる場合の冷却ソリューションです。金属製のヒート新規とか変速のファンを組み合わせたもので、ファン専用コネクターに接続して使用できます。ヒートシンクは、取り付け穴にバネ付きピンを差し込んで取り付けられます。

「RTC battery」は、電源管理ICに搭載されたリアルタイムクロックの電力供給に使用可能な、バッテリーコネクターに接続するための2ピンプラグ付きのPanasonic製ML2020コイン形リチウム二次電池のパッケージです。

カメラ・ディスプレイ用アダプターケーブルは、Raspberry Pi 5(および Compute Module 開発ボード)で使用可能なケーブルです。カメラとディスプレイとでケーブルのピン配置が異なるため、使用するモジュールに応じてケーブルを正しく選択する必要があります。ケーブルは、20cm、30cm、50cmの3種類が販売されます。

「Raspberry Pi 5 PoE+ HAT」は、Raspberry Pi 5向けに設計されたPoE+ HATです。ケースとファンと同時利用可能なように小型に設計されています。このHATボードは年末頃の発売の見込みです。

「Raspberry Pi 5 M.2 HAT」は、Raspberry Pi 5 の PCIe FPC コネクタに接続して利用可能な、M.2形式のPCI ExpressデバイスもしくはNVMeデバイスをサポートしたHATボードです。こちらのHATボードも年末頃の発売の見込みです。

Japanese Raspberry Pi Users Groupでは、サンプルを用いたレビューを行いましたので、以下の記事も合わせてご覧ください。

実機の外観レビュー
実機のパフォーマンスレビュー

Discordを開設しました

Japanese Raspberry Pi Users Groupでは、以前よりGoogle Groupsによるメーリングリスト形式のオンラインコミュニケーションの場を用意しておりましたが、インターネット上でのコミュニケーション方法の変化を受け、このたびDiscordを開設しました。

参加URLは以下のページに記載しています。

なお、Google Groupsは、2023年末をめどに運用を終了いたします。

Raspberry JAM Tokyo 2023.8を開催します

Raspberry Pi ユーザーズグループ、及び関係者の皆様、

2020年のCOVID-19でもたらされたパンデミック状態は、多くの活動が制限され、ITイベントはほぼオンラインイベントのみとなり、多くの人との実交流も制限される状態となりました。また、Raspberry JAMもオンラインイベントが推奨され、オフラインイベントが開催できない状況が続きました。

昨年より、海外ではWith COVIDということで通常状態に戻していく流れとなり、ITイベントもハイブリッドから全面オフラインイベントへと徐々に移行されるようになりました。Raspberry Pi側からもオフラインイベント再開が言及されるようになり、実際、私(太田)も昨月末に台湾のRaspberry Piコミュニティイベントに参加を果たしました。

オフライン再開の流れに伴い、コアメンバーでオフラインのミートアップ・イベントの開催再開を検討してきました。ただ、検討を開始した昨年はRaspberry Pi自体の在庫不足の影響が残っており、オフラインイベントにてブースを構えさせて頂いても、質問といえば在庫のことばかり、、これには参りました。さらに、日本での会場の貸し出しは、まだコロナを理由に難儀を示すところは多く、調整は難航していました。

そんなとき、ミドクラ様から会場を貸与いただける旨のお話と、彼らが持つEdgeIoTのソリューションの推進協力のお願いのお話を頂きました。

ミドクラ様とはOpenStackの関係でCEOの加藤さんとはご挨拶させて頂いたことがありましたが、近年はEgde IoTへシフトしつつあるお話を聞き、大変興味を持ちました。

私としても、なかなか会場を借りられない現状があることから、大変ありがたいお話であると思い、このたびコラボレーションシップを結ばせて頂きました。そしてこの提携の対話がはじまった今年の春先には、Raspberry Piのサプライチェーン改善によって大分在庫が落ち着き、オフラインイベントを再開しても良いチャンスなのでは感じています。

さて、再開するにあたり、

  • 現状のRaspberryPiの状況について話せる限りお知らせ
  • 技術面での近況・アップデート
  • ミドクラ様とのコラボについて
  • MLなどの整理について

など、再開にあたってのこれからのユーザグループの方針の発表と、軽めにLT大会が開催できるミートアップができればと思っております。

ミドクラ 加藤様 エンドースメント

この度ご縁あり、世界でも有数の技術力を有したジャパニーズ・ラズベリーパイ・ユーザーズ・グループさんの活動を、ミドクラでホスト&支援させて頂くことになりました。

ミドクラは次のコンテナ技術と言われるWeb Assemblyを用いたEdge Device向けの仮想環境の開発に注力しており、東京のオフィスにはローカル5GやGPUサーバー、3Dプリンターなどを備えたオープンイノベーションのためのラボ(「Midocola」)を設置しています。

今後、グループ固有の活動で自由に使って頂くだけでなく、Edge AIの領域にてラズパイを利用した情報発信、啓蒙を含めた様々な先進的な取り組みなどを進めていければと思います。

参加登録について

参加登録はConnpassにて受け付けております。ご参加をお待ちしております。

https://raspberrypi.connpass.com/event/293132/

Raspberry Pi Pico Wが日本国内で発売開始

2022年に発売されたRaspberry Pi Pico Wについて、工事設計認証の取得および表示手順の完了を受けて、日本国内の認定リセーラーが2023年3月27日より販売を開始しています。

KSYは税込1,100円+送料で販売中です。

リリース https://raspberry-pi.ksyic.com/news/page/nwp.id/121
販売ページ https://raspberry-pi.ksyic.com/main/index/pdp.id/863/pdp.open/863

スイッチサイエンスは1,210円+送料で販売中です。なお、需要と供給が安定するまで、購入台数の制限(3台)を設けるとのことです。

リリース https://prtimes.jp/main/html/rd/p/000000122.000064534.html
販売ページ https://www.switch-science.com/products/8171

Raspberry Pi Global Shutter Cameraリリース

Raspberry Pi 公式ブログより引用

Raspberry Pi (tradong) Ltd.は3月9日、Raspberry Pi Global Shutter Cameraを発表しました。

Raspberry Pi Global Shutter Cameraは、Sony IMX296センサーを使用した1600万画素のグローバルシャッターカメラで、通常のローリングシャッターカメラと比較して、高速で動作する物体を歪みなく撮影するのに向いています。レンズはRaspberry Pi HQ Cameraと同じくCマウントおよびCSマウント(付属のC-CSアダプタで対応)の各レンズが利用可能です。

Raspberry Pi Global Shutter Cameraの価格は50ドルで、各認定リセーラーを通じて販売されます。日本ではKSY、スイッチサイエンスでそれぞれ販売が開始しています。

KSY(税込8,470円)

スイッチサイエンス(税込8,525円)